ゲルマニウム, by Wikipedia https://ja.wikipedia.org/wiki?curid=8488 / CC BY SA 3.0
#ゲルマニウム
ゲルマニウム
ゲルマニウム( )は原子番号32の元素。元素記号は Ge。炭素族の元素の一つ。ケイ素より狭いバンドギャップ(約0.7 eV)を持つ半導体で、結晶構造は金剛石構造である。
電子機器に使われ、有機ゲルマニウムのプロパゲルマニウムは経口B型肝炎治療の医薬品としても使われる。健康器具ではその効果を示す文献はないとされ、日本で違法にがんに効くと宣伝して業者が逮捕されたケースもある。
初期のトランジスタにはゲルマニウムが使われ、安定性に優れるケイ素(シリコン)が登場するまでは主流だった。現在でも、電圧降下が小さいことからダイオードや、バンドギャップが比較的狭いことから光検出器に用いられる。
また、ガンマ線の放射線検出器(半導体検出器)にも用いられる。素子を液体窒素などで冷却する必要があるという欠点もあるが、エネルギー分解能に優れることから利用されている。
赤外線に対して透明で、赤外域で高い屈折率(約 n = 4)を示す材料として有用である。この性質を利用して石英を用いたレンズにゲルマニウムを添加すると屈折率が上がり、また赤外線を透過するようになるので、光学用途にも多用される。
ドミトリ・メンデレーエフは、自ら考案した周期表で当時知られていた元素(ケイ素)から、未発見の元素を “エカケイ素”(Ekasilicon, Es:周期表におけるケイ素のすぐ下の元素という意味)として予言した。1885年、ドイツのクレメンス・ヴィンクラーがアージロード鉱という銀鉱石からエカケイ素に当たる新元素を発見し、ドイツの古名ゲルマニア (germania) にちなんでゲルマニウムと命名した。メンデレーエフが周期表に基づいて予想したエカケイ素の性質とゲルマニウムの性質がよく一致し、メンデレーエフの周期表の完成度の高さを示す好例となった。
ゲルマニウムは半導体材料としては比較的融点が低いため、ゾーンメルト法によって半導体として利用できる高純度の単結晶を得ることが比較的容易だったので黎明期の半導体産業で使用された。1947年12月にベル研究所で初めて増幅作用を確認した点接触型トランジスタはGeトランジスタで、それに続いて開発された合金接合型トランジスタもGeトランジスタで1950年代の黎明期の半導体産業を支えた。Geトランジスタは高温に弱く、動作温度範囲の上限が約70℃に制限されるという弱点があったがシリコントランジスタは高温での安定性が高く、約125℃まで作動したので、高温でも安定して作動するシリコントランジスタが主流になったことにより、半導体として使用されるゲルマニウムは主役の座を降りたかに見えたが、近年、シリコントランジスタの高速化の限界が顕在化するにつれてゲルマニウムの高電子移動度が着目され、再び脚光を浴びつつある。また、ゲルマニウム単体だけでなく、シリコンに微量のゲルマニウムを添加したシリコンゲルマニウムとして使用する開発も進みつつある。この場合、従来の微細化プロセスを利用できるので高集積度の半導体素子の製造に適する。界面で二酸化ゲルマニウム(GeO)の分解が起きることにより一酸化ゲルマニウム(GeO)が発生するためシリコン半導体では製造技術が確立されている「ゲート絶縁膜」をゲルマニウムで作成することが大変難しかったので高集積度のゲルマニウム半導体の量産のボトルネックになっていた。
1887年にWinklerが最初に有機ゲルマニウムを合成し、1962年にKaarsらが合成したものは生理研究を本格化させていった。浅井一彦らは石炭や漢方薬にゲルマニウムが少し含まれていることから注目し、1968年にレパゲルマニウム(研究時の名称Ge-132、一般にアサイゲルマニウムとも)を合成する。レパゲルマニウムは食品として安全性が確かめられている。また臨床試験も実施されてきた。
1978年に佐藤隆一らがプロパゲルマニウムを合成し、臨床試験が実施され1994年から免疫を高める経口B型肝炎治療剤のセロシオンカプルとして販売されている。有機ゲルマニウムの中でも、唯一医薬品として認められているこのプロパゲルマニウムでは、ウイルス性のB型慢性肝炎に対する有効性が認められるものの、健康障害や死亡などの危険性についての警告文が付されており、消化器系の各種症状(腹痛、下痢、口内炎等)、うつ、月経異常、脱毛等の副作用がある。
スピロゲルマニウムは新薬にするために臨床試験が行われていたが、胃癌では毒性の高さと有効率の低さから、1999年にそれ以上の研究は断念された。
ゲルマニウムを含む健康食…
powered by Auto Youtube Summarize